2016 | OriginalPaper | Chapter

# 1. Introduction

Published in:
Introduction to Time Series and Forecasting

## Abstract

In this chapter we introduce some basic ideas of time series analysis and stochastic processes. Of particular importance are the concepts of stationarity and the autocovariance and sample autocovariance functions. Some standard techniques are described for the estimation and removal of trend and seasonality (of known period) from an observed time series. These are illustrated with reference to the data sets in Section 1.1. The calculations in all the examples can be carried out using the time series package ITSM, the professional version of which is available at http://extras.springer.com. The data sets are contained in files with names ending in.TSM. For example, the Australian red wine sales are filed as WINE.TSM. Most of the topics covered in this chapter will be developed more fully in later sections of the book. The reader who is not already familiar with random variables and random vectors should first read Appendix A, where a concise account of the required background is given.